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Abstract

This work presents an automated tool for detecting and measuring bias in healthcare datasets and
predictive models. We evaluated fairness at both the data and algorithmic levels using metrics in-
cluding Statistical Parity Difference (SPD), Equal Opportunity Difference (EOD), and Demographic
Disparity. Using the SyntheticMass (healthcare expenses) and Brain Stroke healthcare datasets, we
found that SyntheticMass showed substantial demographic imbalance (83.6% White patients) and
age-based disparities (SPD: 0.82 for younger vs. elderly patients). While the Brain Stroke dataset
exhibited more balanced demographics, we identified substantial disparities in stroke outcomes be-
tween age groups. Across both datasets, neural networks consistently outperformed traditional
machine learning models on fairness metrics. In the Brain Stroke dataset, neural networks achieved
both higher accuracy (94.8% vs. 91.8% for the best traditional model) and nearly perfect fairness
scores (SPD: 0.000-0.0007; EOD: 0.000-0.0128). Additionally, we introduced a combined scoring
metric that equally weights accuracy and fairness, providing researchers with a practical framework
for model selection that prioritizes both dimensions. The interactive visualization dashboard makes
fairness analysis accessible to medical researchers without specialized knowledge of fairness-aware
machine learning.

Keywords: healthcare bias, fairness evaluation, machine learning, neural networks, statistical
parity, equal opportunity, demographic disparity.

1. Introduction

Artificial intelligence (AI) is quickly becoming central in healthcare. Machine learning algorithms
can help doctors diagnose diseases, suggest treatments, or predict which patients need urgent care.
As exciting as this is, there is a hidden risk: If the Al is trained on biased or incomplete data, it
can make unfair decisions that affect people’s lives. There have already been real-world cases that
show this danger. For example, a 2019 study found that an algorithm from a US hospital gave
white patients better access to care than black patients (Obermeyer et al., 2019). In another case,
an Al hiring tool at Amazon was biased against women (Dastin, 2018). There have even been Al
systems that miss early signs of disease in seniors because too few elderly patients are included
in their training data (Institute of Medicine Committee on the Future Health Care Workforce
for Older Americans, 2008). Researchers creating new Al for healthcare might not realize when
their datasets are missing important groups, or when their models treat some groups less fairly
than others. By the time these biases appear in real-world decisions, it can be too late (or too
complicated) to fix them. Our goal is to help researchers spot and measure these hidden biases
early, before deployment.

In this work, we focus on two fundamental questions: (1) How can researchers identify and
quantify data-level and algorithmic biases in healthcare datasets? (2) How do different machine
learning approaches, especially neural networks versus traditional models, compare when it comes
to balancing fairness and accuracy?
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1.1. Related Prior Work

Many tools and studies have aimed to detect or highlight bias in machine learning, but few offer an
all-in-one practical solution for healthcare researchers. For example, Intuit’s bias-detector (Mishraky
et al., 2022) uses metrics like Statistical Parity Difference and Equal Opportunity to detect gender
and race bias in binary classifiers, but it relies on features (like names and zip codes) most relevant
to US data, and users must customize it for broader applications. News Bias Detector (Raza et al.,
2024) uses natural language models to spot political bias in text, but cannot handle structured
healthcare datasets. Other tools, like AlgorithmAudit’s Bias Detection (Algorithm Audit, 2023),
use clustering to find underperforming user groups without needing protected attribute labels.
However, they focus only on performance gaps, not on well-defined fairness metrics.

Within healthcare, most research has focused on identifying when bias has already occurred.
For instance, Siddique et al. (Siddique et al., 2024) showed how clinical algorithms can accidentally
deepen racial disparities, while Obermeyer et al. (Obermeyer et al., 2019) demonstrated how cost-
based predictions led to underestimating the needs of black patients. While these studies are
critical, they do not provide step-by-step tools for everyday researchers to check their own data
and models for bias.

Our work was motivated by this gap: (1) We focus specifically on healthcare, (2) We integrate
both data-level (who is in your dataset?) and algorithm-level (how fair are your predictions?)
analyses in one easy-to-use tool, (3) We provide direct comparisons between traditional and neural
network models on fairness as well as accuracy, and (4) We build an interactive tool that any
researcher can use, even without expertise in fairness-aware machine learning.

1.2. Objectives

Our main objective is to create a practical and accessible tool that helps researchers find and reduce
bias in healthcare data, from the very first stages of a project.

Specifically, our tool: (1) Detects data-level bias - like class imbalance and differences in
positive or negative outcomes between demographic groups. (2) Assesses algorithmic bias -
by measuring whether trained machine learning models (traditional or neural networks) have con-
sistent performance and fairness across protected groups. (3) Implements industry-standard
fairness metrics, including Statistical Parity Difference (IBM, 2023), Equal Opportunity Differ-
ence, Demographic Disparity (Amazon Web Services, 2023), and Average Odds Difference. (4)
Visualizes results in an interactive interface, so users can instantly see and explore where
bias may be lurking. By giving researchers the ability to investigate, understand, and resolve bias
in their datasets and models, our tool supports more equitable Al in healthcare, helping to avoid
harm before it happens.

1.3. Key Definitions and Concepts

We have defined the main concepts used throughout our paper. These terms often have precise
mathematical meanings in fairness research:

e Protected Attribute: A feature or characteristic (such as race, gender, or age) that is
legally or ethically important. Fairness analysis checks if outcomes for groups defined by
protected attributes differ more than they should.

¢ Reference Group: The demographic group used as a baseline when calculating fairness
metrics. This is typically the majority group in each protected attribute (e.g., the most
common racial group). All fairness comparisons are made relative to this reference group.
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e Data-level Bias: Imbalances or inequalities in the dataset itself, before you train any model.
For example, if one group (like older adults) only makes up 5% of your data, or if the positive
outcome rate is much higher for one gender than another.

e Algorithmic Bias: Unequal performance or predictions made by a trained model across
groups. For example, if the model makes more mistakes for rural patients than for urban
patients, even if both are present in the training data.

e Statistical Parity Difference (SPD): The difference in the rate of favorable outcomes
(such as being recommended for treatment) between two groups. Mathematically:

SPD = P(favorable outcome|Group A) — P(favorable outcome|Group B)

e Equal Opportunity Difference (EOD): The gap in true positive rates (i.e., sensitivity)
between groups. This metric highlights whether one group is less likely to receive a correct
positive prediction than another.

EOD == TPRGroup A — TPRGI‘Oup B

e Average Odds Difference (AOD): The average of the difference in true positive rates and
false positive rates between groups. AOD captures both the fairness in giving correct positive
predictions and the mistakes where negatives are falsely predicted as positive.

AOD = 0.5 x [(FPRGroup A — FPI:{Group B) + (TPRGroup A — TPRGroup B)]

e Demographic Disparity (DD): The difference between a group’s share of negative (or
positive) outcomes and their share of the overall population. If a group makes up 10% of the
data but receives 30% of negative outcomes, there is demographic disparity.

DD = P(Group|Unfavorable/favorable) — P(Group|Population)

Class Imbalance: When one group or outcome category is much more common than others.

2. Methods

Our Social Bias Detection tool systematically evaluates biases in healthcare datasets through au-
tomated data-level and algorithmic-level analyses. We designed the tool using a Streamlit-powered
user interface where users upload datasets in CSV format. All subsequent pre-processing, analysis,
and visualization steps are automated.

2.1. Datasets

We conducted experiments on two synthetic but realistic healthcare datasets to demonstrate gen-
eralizability and robustness.

SyntheticMass Dataset: This open-source collection of simulated patient records (Walonoski
et al., 2018), based on Massachusetts demographics, includes the patients.csv file with 12,353
records containing demographic features (race, ethnicity, gender, birthdate) and healthcare-related
metrics. We selected HEALTHCARE EXPENSES as the target variable for fairness analysis.

Brain Stroke Dataset: Containing 4,981 patient records (Pathan et al., 2020), this dataset
includes clinical and demographic information such as gender, age, hypertension, heart disease
status, marital status, work type, residence type, glucose levels, BMI, and smoking status. The
target variable is binary stroke occurrence (1 = stroke, 0 = no stroke).
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2.2. Preprocessing Pipeline

Both datasets underwent consistent preprocessing steps:

1. Missing Value Handling: Missing data were imputed using mode for categorical variables
and median for numerical variables. The Brain Stroke Dataset contained no missing values.

2. Feature Engineering: Age features were identified and processed: in the Brain Stroke
dataset, age is numerical, while in SyntheticMass, age was derived from birthdate. We applied
binning (Google Developers, 2023) to create age groups (0-18, 19-35, 36-50, 51-65, and 65+).

3. Target Variable Preparation: For continuous variables like healthcare expenses in Syn-
theticMass, binary targets were created by comparing values to the median; values above the
median were classified as unfavorable outcomes (high expenses). In the Brain Stroke dataset,
the stroke attribute is already binary (1 for stroke, 0 for no stroke); for fairness calculations,
we ensured consistent encoding so that 1 always indicates the favorable outcome.

4. Categorical Encoding: LabelEncoder from scikit-learn was used to convert categorical
protected attributes to numerical format for all models, maintaining reference mappings for
interpretation.

2.3. Data-Level Bias Analysis

Data-level bias analysis examines the dataset before any model training. We implemented three
complementary approaches:

Class Imbalance Assessment: We calculated the percentage representation of each group
within protected attributes (race, gender, age group, etc.), flagging groups with less than 10% of
the dataset as underrepresented (Bellamy et al., 2018).

Statistical Parity Difference (SPD): Using the formal definition from Section 1.3, we cal-
culated SPD for each protected attribute by comparing the favorable outcome rate in the reference
group (typically the most prevalent group) to those in other groups. Disparities were categorized
as Minimal (|SPD| < 0.05), Small (0.05 < [SPD| < 0.10), or Substantial (|[SPD| > 0.10) (Bellamy
et al., 2018).

Demographic Disparity (DD): Following Section 1.3, we computed DD for each group as
the difference between its proportion among unfavorable (or favorable) outcomes and its proportion
in the full dataset, again classifying results by the same thresholds as for SPD.

2.4. Algorithm-Level Bias Analysis

We analyzed model-level fairness by splitting each dataset into training (70%) and test (30%) sets,
with a fixed random seed of 42 to ensure reproducibility. Protected attributes were retained in the
feature set to evaluate their possible influence on prediction.

Traditional Machine Learning Models: Using LazyPredict, we trained and evaluated over
20 classification algorithms, selecting the top five based on accuracy, ROC AUC, and F1 scores.

Neural Network Architectures: Three architectures of varying complexity were imple-
mented: (1) Simple Network - a single hidden layer with 16 neurons, ReLU activation; (2) Deep
Network - four hidden layers (64, 32, 16, and 8 neurons), ReLU activation, dropout rate 0.3; (3)
Residual Network - two residual blocks with skip connections, each containing two dense layers (32
neurons) and dropout rate 0.2. All neural networks used binary cross-entropy loss, Adam optimizer
(learning rate: 0.001), early stopping with patience of 5 epochs, batch size 32, and up to 10 epochs
of training.
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For each trained model, we calculated the percentage of correct predictions on the test set
(Accuracy), the difference in favorable rates across protected groups (SPD), the difference in true
positive rates across protected groups (EOD) and the average difference in false positive and true
positive rates across protected groups (AOD). For algorithmic fairness, we computed these metrics
using model predictions on the test set rather than the actual labels used in data-level analysis.
For example, the algorithmic SPD is calculated as:

SPD,y, = P(Y = 1|Group A) — P(Y = 1|Group B)
where Y denotes the model’s predictions.

2.5. Fairness Scoring System
To compare models on both accuracy and fairness, we developed a combined scoring system:
1. Accuracy was normalized by dividing by the maximum accuracy among all models.

A Accuracy
CCUraCypormalized —
Accuracy
max

2. A fairness score was computed by normalizing and averaging SPD and EOD:

|SPD)| |[EOD|
‘SPDmaX‘ ‘EODI‘H&X’

Fairness score = 1 —

where |SPDpax| and [EODax| are the maximum absolute SPD and EOD values observed
across all models.

3. The combined score was computed as (a higher combined score indicates better trade-off
between predictive performance and fairness):

Combined score = 0.5 x Accuracy + 0.5 x Fairness score

2.6. Validation and Reliability

To ensure analytic robustness and reproducibility, we cross-validated our fairness metric implemen-

tations against IBM’s Al Fairness 360 toolkit (Bellamy et al., 2018), using both BinaryLabelDatasetMetric
and ClassificationMetric. For statistical reliability and unbiased model comparisons, all ma-

chine learning models, including neural networks, were freshly initialized for each run, with no
parameter sharing across experiments.

2.7. User Interface and Accessibility

We designed our tool to be accessible to researchers without specialized expertise in fairness-aware
machine learning (see Figures 1 and 2). The complete implementation, including source code and a
demonstration video, is available in our research repository: https://github.com/precillico/social-
bias-detection-tool.

3. Results

Below are our findings from the SyntheticMass and Brain Stroke Healthcare datasets. For each,
we report data-level bias metrics followed by algorithmic fairness results.


https://github.com/precillieo/social-bias-detection-tool
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Social Bias Detection in Medical
Research Data

Upload your dataset for processing.

This tool helps researchers identify both data and algorithm level biases in their datasets.

Choose a CSV file

Drag and drop file here

Browse files
Limit 200MB per file - CSV

ients.csv 3.5MB X

Figure 2: Interactive user interface of the
Social Bias Detection tool.

Figure 1: Architectural overview of the Social Bias
Detection framework.

3.1. Data-Level Bias Analysis
3.1.1. CrLASS IMBALANCE

Table 1 presents the demographic distributions across both datasets. The SyntheticMass dataset
exhibited substantial racial imbalance (83.6% White), while the Brain Stroke dataset showed moder-
ate gender imbalance (58.4% Female) and marital status imbalance (65.9% Married). Both datasets
showed contrasting age distributions: SyntheticMass skewed toward older adults (33.1% in 65+ cat-
egory), while the Brain Stroke dataset had more balanced age representation (17.7%-22.8% across
categories).

3.1.2. STATISTICAL PARITY DIFFERENCE (SPD)

For each protected attribute, the SPD results are summarized side-by-side in Table 2. SPD is
reported for every group (relative to the reference group listed). In the SyntheticMass dataset,
substantial age-based disparities were observed, with much higher SPD values for the younger
groups (0-18 and 19-35, both 0.8168) relative to the 65+ reference group. In contrast, most SPD
values for ethnicity and gender were minimal or small. In the Brain Stroke dataset, SPD values were
generally close to zero (minimal), with the exception of the 654 age group (SPD: 0.1009, classified
as substantial) compared to the 51-65 reference group. No other group exhibited substantial SPD.

3.1.3. DEMOGRAPHIC DispArITY (DD)

Table 3 compares Demographic Disparity metrics across both datasets. In the SyntheticMass
dataset, DD values revealed major age-based skew: the 654 group was overrepresented among
unfavorable outcomes (DD: 0.2099), while the 19-35 and 0-18 groups were underrepresented (DD:
-0.1915 and -0.1184, respectively). By comparison, no group in the Brain Stroke dataset exceeded
the minimal threshold for demographically based disparity, with all DD values remaining close to
zero across age, work type, and other attributes.

3.2. Algorithm-Level Fairness Analysis

We evaluated multiple model architectures for predicting high healthcare expenses in the Syn-
theticMass dataset. Table 4 reports accuracy and fairness metrics for each model. Traditional
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Table 1: Class Imbalance Analysis: Demographic Distributions in Both Datasets

SyntheticMass Dataset Brain Stroke Dataset
Demographic Count Percentage | Demographic Count Percentage
Race Gender
White 10,328 83.6% | Female 2,907 58.4%
Black 1,100 8.9% | Male 2,074 41.6%

Asian 842 6.8%
Native 73 0.6% Marital Status
Other 9 0.1% | Yes 3,280 65.9%
No 1,701 34.1%
Ethnicity Work Type
Non-Hispanic 11,036 89.3% | Private 2,860 57.4%
Hispanic 1,316 10.7% | Self-employed 804 16.1%
Children 673 13.5%
Gender Govt_job 644 12.9%
Female 6,253 50.6%
Male 6,099 49.4% Residence Type
Urban 2,532 50.8%
Age Group Rural 2,449 49.2%
65+ 4,093 33.1%
51-65 2,434 19.7% Age Group
19-35 2,366 19.2% | 51-65 1,134 22.8%
36-50 1,997 16.2% | 36-50 1,047 21.0%
0-18 1,462 11.8% | 19-35 961 19.3%
65+ 959 19.3%
0-18 880 17.7%

Table 2: Statistical Parity Difference (SPD) values by protected attribute and group for Synthet-
icMass (left) and Brain Stroke (right).

SyntheticMass Dataset Brain Stroke Dataset
Attribute Group Reference SPD Attribute Group Reference SPD
Race Asian White 0.0529 Gender Male Female 0.0039
Black White -0.0209 Ever Married No Yes -0.0497
Native White -0.0050 Work Type Self-empl. Private 0.0291
Other White 0.1685 Govt_job Private -0.0005
Ethnicity Nonhispanic Hispanic 0.0272 Children Private -0.0488
Gender Male Female -0.0539 Residence Rural Urban -0.0072
Age Group 0-18 65+ 0.8168 Age Group 65+ 51-65 0.1009
19-35 65+ 0.8168 36-50 51-65 -0.0436
36-50 65+ 0.3506 19-35 51-65 -0.0607
51-65 65+ 0.0353 0-18 51-65 -0.0595

models achieved higher accuracies (up to 0.899), but showed poorer fairness across both SPD
(0.4080-0.4455) and EOD (0.8050-0.8496). Neural network models yielded slightly lower accuracy
(0.8430-0.8492), but achieved lower SPD (0.3775-0.4277) and EOD (0.7300-0.7763) values, result-
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Table 3: Demographic Disparity Comparison Between Datasets

SyntheticMass Dataset Brain Stroke Dataset
Group DD Assessment | Group DD Assessment
Age Groups Age Groups
65+ 0.2099 Substantial | 0-18 0.0088 Minimal
51-65 0.1109 Substantial | 19-35 0.0099 Minimal
36-50 -0.0109 Minimal | 36-50 0.0070 Minimal
19-35 -0.1915 Substantial | 51-65 -0.0029 Minimal
0-18 -0.1184 Substantial | 65+ -0.0229 Minimal
Race Work Type
White 0.0031 Minimal | Private -0.0012 Minimal
Black 0.0040 Minimal | Self-employed -0.0053 Minimal
Asian -0.0070 Minimal | Children 0.0067 Minimal
Native 0.0001 Minimal | Govt_job -0.0002 Minimal
Other -0.0002 Minimal

ing in higher combined scores. The ResidualNN model provided the best trade-off, achieving a
combined score of 0.5448.

Table 4: Algorithmic fairness evaluation for SyntheticMass dataset

Model Category Accuracy SPD EOD Combined Score
ResidualNN Neural Network 0.8478 0.3775 0.7300 0.5448
DeepNN Neural Network 0.8492 0.3902 0.7444 0.5342
AdaBoostClassifier Traditional 0.8907 0.4080  0.8050 0.5295
RandomForestClassifier — Traditional 0.8991 0.4347 0.8408 0.5087
BaggingClassifier Traditional 0.8886 0.4355 0.8309 0.5053
LGBMClassifier Traditional 0.8988 0.4425 0.8485 0.5018
SimpleNN Neural Network 0.8430 0.4277 0.7763 0.5003
XGBClassifier Traditional 0.8969 0.4455  0.8496 0.4988

For the Brain Stroke dataset, we observed different performance characteristics, as summarized
in Table 5. Neural network models achieved both higher accuracy (0.947-0.948) and near-perfect
fairness metrics (SPD: 0.000-0.0007, EOD: 0.000-0.0128), resulting in the highest combined score
(up to 0.9996). In contrast, traditional models had either lower accuracy (down to 0.708) and/or
higher group disparities (SPD: 0.003-0.328, EOD: 0.000-0.846), leading to substantially lower com-
bined scores.

Table 5: Algorithmic fairness evaluation for Brain Stroke dataset

Model Category Accuracy SPD EOD Combined Score
DeepNN Neural Network 0.9478 0.0000  0.0000 0.9996
ResidualNN Neural Network 0.9478 0.0000 0.0000 0.9996
SimpleNN Neural Network 0.9485 0.0007 0.0128 0.9957
Perceptron Traditional 0.9445 0.0033  0.0000 0.9953
BernoulliNB Traditional 0.9177 0.0595 0.2821 0.8550
QuadraticDA Traditional 0.8749 0.1278  0.5256 0.7085
GaussianNB Traditional 0.8562 0.1572  0.6282 0.6458
NearestCentroid  Traditional 0.7084 0.3278  0.8462 0.3734
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4. Discussion

Our fairness detection tool provided actionable insights into bias within healthcare datasets and
predictive models. These results help answer a fundamental question: How fair is my data and
my model, and how can I know? We recommend using the following guideline: Statistical Parity
Differences (SPD) above 0.10 (Bellamy et al., 2018) typically indicate substantial bias that may
require further attention. A dataset or model can be considered “fair” if all group-wise metrics
are consistently minimal or small, as indicated in our tables and visual outputs. Importantly, not
all disparities signal unfairness; some reflect real clinical patterns. For example, in SyntheticMass,
high SPD values for younger age groups likely reflect true lower healthcare expenses for youth
compared to older adults. Domain knowledge remains essential for interpreting which disparities
are concerning. In our algorithmic analysis, neural networks consistently offered a better balance
of fairness and accuracy than traditional models, particularly in the Brain Stroke dataset, where
neural networks achieved SPD and EOD near zero. We attribute this to the ability of neural
networks to model complex, group-dependent patterns, even with some imbalance. However, in
SyntheticMass, where class imbalance is severe (e.g., 84% White patients), the fairness difference
between neural and traditional models diminished. Thus, neural networks might improve equity,
but only when the training data have adequate group representation.

As future work, our combined accuracy-fairness scoring could be improved with adaptive weight-
ing tuned to clinical priorities. Adding explainable AI methods would also help users understand
not just if bias exists, but why. All fairness and accuracy metrics in this study were fully validated
and reflect corrected computations.

5. Conclusions

We developed and validated a comprehensive tool for detecting bias in healthcare datasets at
both the data and algorithmic levels. Our methods assessed class imbalance, statistical parity
difference, and demographic disparity, uncovering racial and age-based imbalances, especially in the
SyntheticMass dataset. Across models, neural networks, particularly ResidualNN, struck the best
balance between accuracy and fairness, outperforming traditional models on key fairness metrics.
This highlights the importance of considering equity, not just predictive accuracy, when selecting
models for healthcare Al. The tool’s interactive dashboard makes fairness analysis accessible to all
researchers, helping them identify and address potential biases with minimal technical overhead.
Although more work is needed to extend validation and add interpretability features, our results
show that this framework is a practical step toward more equitable, and trustworthy healthcare
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